| (n+1)3 | ||
a) lim | ||
| (n+2)2 |
| 2+ √n | ||
b) lim | ||
| n+3 |
| 1+3+5+...+(2n−1) | ||
c) lim | ||
| 2n2+3 |
| 2+4+6+...+2n | ||
d) lim | ||
| 1+4+7+...+(3n−1) |
| n + 1)3 | n3 + 3n2 + 3n + 1 | |||
a) an = | = | = | ||
| ( n + 2)2 | n2 + 4 n + 4 |
| n + 3 + 3n + 1n2 | ||
= | ||
| 1 + 4n + 4n2 |
| n + 1)3 | n3 + 3n2 + 3n + 1 | |||
a) an = | = | = | ||
| ( n + 2)2 | n2 + 4 n + 4 |
| n + 3 + 3n + 1n2 | ||
= | ||
| 1 + 4n + 4n2 |
| 2 + √n | 2√n + 1 | |||
b) an = | = | |||
| n + 3 | √n + 3√n |
| 0 + 1 | ||
lim an = | = 0 | |
| +∞ +0 |
| 1 + 3 + 5 + ...+(2 n − 1) | n2 | 1 | ||||
c) an = | = | = | ||||
| 2 n2 +3 | 2 n2 +3 | 2 + 3n2 |
| 1 | 3 | |||
lim an = | , bo lim | = 0 | ||
| 2 | n2 |
Powinno być 1 + 4 + 7 + ... + 3*( n −1)
tak było w zadaniu
ale dzięki ze resztę przykładów