matematykaszkolna.pl
Ciągi arytmetyczne Ania: Prosze o pomoc .: Zad 1. Znajdź wzór ogólny ciągu arytmetycznego mając: a3=10 i a2+a6=28 . Zad 2. Znajdź pierwszy wyraz i różnicę ciągu arytmetycznego (a4), w którym a3=12 i s8=156 .
2 kwi 12:12
zawodus: wzór na n−ty wyraz ciągu znasz?
2 kwi 12:17
pigor: ..., np. zad.1) a n=a1+(n−1)r= ? a3=10 i a6=28 ⇔ a1+2r=10 i a1+5r=28 /− stronami ⇔ ⇔ 3r=18 i a1=10−2r ⇔ r=6 i a1=10−12=−2 , zatem a n= −2+(n−1)*6=−2+6n−6= 6n−8a n=2(3n−4) , n=1,2,3,... −−−−−−−−−−−−−−−−−−−−−−−−−−− a w zad2) masz s8= 156, czyli sumę S 8 , czy wyraz a 8
2 kwi 12:24
łucja :
13 gru 18:33
Jolanta: a3=10. a2+a6=28 a3=a2+r. to a2=a3−r a6=a3+3r. a3−r+a3+3r=28 10+10+2r=28 2r=8 r=4 a3=a1+2r a1=a3−2r a1=10−8=2 an=a1+(n−1)r an=2+(n−1)*4 an=2+4n−4 an=4n−2
13 gru 21:52
Eta: a3=10 i r=4 bez obliczania a1 an=a3+(n−3)*r ..................... an= 4n−2
13 gru 21:58