Wykaż, że jeżeli α,β,γ są kątami wewnętrznymi trójkąta i sin2α + sin2β = 5sin2γ, to sinγ ≤
3/5
| a | b | c | ||||
= | = | = 2R, | ||||
| sinα | sinβ | sinγ |
| a | b | c | ||||
sinα = | , sinβ = | , sinγ = | . | |||
| 2R | 2R | 2R |
| a2 | b2 | c2 | ||||
+ | = 5 | , | ||||
| 4R2 | 4R2 | 4R2 |
| a2+b2 | ||
= a2 + b2 − 2abcosγ | ||
| 5 |
| 2 | a2+b2 | ||
(3) cosγ = | , | ||
| 5 | ab |
| 4 | ||
(4) cosγ ≥ | . | |
| 5 |