| n−2 | ||
Wykaż że ciąg (an) jest monotoniczny a= | ||
| 2n+1 |
| 1 | 5 | |||||||||||||||||||
an = | = | − | . | ||||||||||||||||||
| 2n+1 | 2 | 2(2n+1) |
| 5 | ||
| 2(2n+1) |
| 1 | 5 | 1 | 5 | |||||
ak+1 − ak = | − | − ( | − | ) = | ||||
| 2 | 2(2(k+1)+1) | 2 | 2(2k+1) |
| 5 | 5 | 5 | 1 | 1 | ||||||
= | − | = | ( | − | ) = | |||||
| 2(2k+1) | 2(2(k+1)+1) | 2 | 2k+1 | 2k+3 |
| 5 | 2k+3−2k−1 | 5 | |||
= | = | > 0. | |||
| 2 | (2k+1)(2k+3) | (2k+1)(2k+3) |