| (n+5)(n+4) | |||||||||
|Ω|= | = | . | ||||||||
| 2 |
| n(n−1) | |||||||||
|A'| = | = | . | ||||||||
| 2 |
| |A| | n(n−1) | (n+5)(n+4) | ||||
P(A') = | = | : | = | |||
| |Ω| | 2 | 2 |
| n(n−1) | ||
= | . | |
| (n+5)(n+4) |
| n(n−1) | ||
P(A) = 1 − | ||
| (n+5)(n+4) |
| 5 | ||
W treści zadania podano, że P(A) = | , wystarczy więc rozwiązać równanie | |
| 6 |
| 5 | n(n−1) | |||
= 1 − | , n>1. | |||
| 6 | (n+5)(n+4) |
| n(n−1) | 1 | |||
= | , n>1 | |||
| (n+5)(n+4) | 6 |
| |A'| | ||
P(A') = | = ... | |
| |Ω| |