oblicz katy a, b, c w szescianie, wynik podaj w zaokragleniu do pelnych stopni
odp to
a 35
b 55
c 70
?/
| 34+34−1 | 12 | 1 | ||||
cos(c)= | = | = | ||||
| 2*12√3*12√3 | 32 | 3 |
| 1√2 | ||
cos(a)= | = 13p{6] ⇒ a= 35o | |
| 1√3 |
| 1 | ||
cos(b)= | ⇒ cos(b)= 13√3 ⇒ b= 55o . ... ![]() | |
| 1√3 |
x = a√2
| a | a | 1 | √2 | |||||
tgα = | = | = | = | => α = 35° | ||||
| x | a√2 | √2 | 2 |
| y | z | |||
γ − kąt wierzchołkowy trójkąta o bokach a, | i | |||
| 2 | 2 |
| a | y | |||
Trójkąt dzielimy na 2 trójkąty prostokątne o bokach | , | i h | ||
| 2 | 2 |
| γ | a | y | a | 2 | a | a | 1 | |||||||||
sin | = | : | = | * | = | = | = | |||||||||
| 2 | 2 | 2 | 2 | y | y | a√3 | √3 |
| γ | √3 | γ | ||||
sin | = | => | = 35° => γ = 70° | |||
| 2 | 3 | 2 |
| x | a√2 | |||
tgβ = | = | = √2 => β = 55° | ||
| a | a |