matematykaszkolna.pl
Równania wTSK: 1) x4 − 17x2 + 16 = 0 2) (x2−5x)(x2−5x−2)−20=0
10 mar 13:57
wredulus: I w czym mamy problem
10 mar 13:59
wTSK: hmmm, nie wiem czy dobrze robię, mam podstawić za x2 np. zmienną t ?
10 mar 14:00
Kaja: no na przykłademotka
10 mar 14:00
5-latek: tak i zalozenie t≥0(dlaczego?
10 mar 14:02
Kaja: założenie nie jest konieczne (ale można je zrobić)emotka i tak będzie trzeba powrócic do niewiadomej więc nawet jak t wyjdzie ujemne to po powrocie do niewiadomej x wyjdzie równanie sprzeczneemotka
10 mar 14:04
wredulus: Kaja ... zalozenie potrzebne bo jak sie wroci to wierz mi ze 70% uczniow napisze: x2 =−1 <=> x=1 lub x=−1
10 mar 14:07
Kaja: werdulus to inna sprawa, że zapomnąemotka ale samo w sobie założenie nie jest konieczne. Jak ja byłam w liceum to nie robiliśmy takich założeń.
10 mar 14:19
J: To już jest nas dwóch..emotka Nie tak dawno też dyskutowaliśmy z "Kają" o konieczności założeń emotka
10 mar 14:22
J: Przepraszam "5 − latek" .. jest nas już trzech emotka
10 mar 14:23
wredulus: Z matematycznego punktu widzenia zalozenie moznaby bylo pominac ... jednak z czysto ludzkiego punktu widzenia − lepiej napisac by pokazac wszem i wobec ze sie wie co robi, by sie zabezpieczyc przed 'babolem' i aby pozniej mniej pisac emotka
10 mar 14:24
J: Moim zdaniem ( i nie tylko ), robienie założeń ( tam,gdzie to konieczne ) przed rozwiązywaniem zadania, to powinien być nawyk emotka
10 mar 14:26
Kaja: werdulus jak wyżej napisałam "mozna je zrobić", z tym nie dyskutujęemotka ciesze się że jednak zgadzasz się ze mną , że mozna je pominąćemotka
10 mar 14:27
Kaja: J a tak swoja drogą to lubię z wami podyskutowaćemotka
10 mar 14:28
J: I wzajemnie emotka .. dyskusje często są pouczające , więc warto emotka
10 mar 14:29
Kaja: emotka
10 mar 14:29