| 2xsnix | 1 | ||
− | ∫2xcosx | ||
| ln2 | ln2 |
| 2xsinx | 1 | 2xcosx | |||
− | − | −{1}{ln2}∫2xsinx | |||
| ln2 | ln2 | ln2 |
?
| exp(xln2) | ||
v = | u' = cosx | |
| ln2 |
| sinx exp(xln2) | 1 | ||
− | ∫exp(xln2)cosx dx | ||
| ln2 | ln2 |
| exp(xln2) | ||
v = | u' = −sinx | |
| ln2 |
| sinx exp(xln2) | 1 | cosx exp(xln2) | 1 | ||||
− | ( | − | ∫exp(xln2)(−sinx) dx) = | ||||
| ln2 | ln2 | ln2 | ln2 |
| sinx exp(xln2) | cosx exp(xln2) | 1 | |||
− | − | ∫exp(xln2)sinx dx = ∫exp(xln2)sinx | |||
| ln2 | ln2 | ln22 |
| sinx exp(xln2) | cosx exp(xln2) | ln22+1 | |||
− | = | ∫exp(xln2)sinx dx | |||
| ln2 | ln2 | ln22 |
| ln2 | 1 | |||
∫exp(xln2)sinx dx = | 2xsinx − | 2xcosx +C= | ||
| ln22+1 | ln22+1 |
| 2x | |
(ln2sinx−cosx)+C | |
| ln22+1 |