A = ( − 2; 4) B = ( 6; − 2)
a)
I AB I = √ ( 6 − (−2))2 + (− 2 − 4)2 = √ 82 + (−6)2 = √64 + 36 = √100 = 10
b)
| y2 − y1 | ||
Prosta AB : y − y1 = | *( x − x1) | |
| x2 − x1 |
| − 2 − 4 | ||
y − 4 = | *( x − (−2)) | |
| 6 − (−2) |
| −6 | ||
y − 4 = | *( x + 2) | |
| 8 |
| 3 | 3 | 3 | ||||
y = − | ( x + 2) + 4 = − | x − | + 4 | |||
| 4 | 4 | 2 |
| 3 | 1 | |||
y = − | x + 2 | |||
| 4 | 2 |
| 6 | 3 | |||
a = − | = − | |||
| 8 | 4 |
| 3 | 1 | |||
b = 4 + 2 a = 4 + 2* ( − | ) = 4 − 1U{1}[2} = 2 | |||
| 4 | 2 |
| 3 | 1 | |||
y = − | x + 2 | |||
| 4 | 2 |
| − 2 + 6 | 4 + (−2) | |||
xs = | = 2 ys = | = 1 | ||
| 2 | 2 |
| 3 | 4 | |||
− | *a2 = − 1 ⇒ a2 = | |||
| 4 | 3 |
| 4 | ||
y = | x + b2 i S = ( 2; 1) , więc | |
| 3 |
| 4 | ||
1 = | *2 + b2 | |
| 3 |
| 8 | ||
1 − | = b2 | |
| 3 |
| 5 | ||
b2 = − | ||
| 3 |
| 4 | 5 | |||
y = | x − | |||
| 3 | 3 |
| 3 | 1 | |||
c) Prosta AB ma równanie y = − | x +2 | |||
| 4 | 2 |
| 3 | ||
y = − | x + b3 | |
| 4 |
| 3 | ||
3 = − | *0 + b3 | |
| 4 |
| 3 | ||
y = − | x + 3 | |
| 4 |
nawet dwie metody rozwiązania