a = 21 b = x c = 4 x
α = 120o
Z tw. cosinusów mamy
212 = x2 + ( 4 x)2 − 2*x*4 x * cos 120o
212 = x2 + 16 x2 − 8 x2 * cos ( 90 + 30)o
212 = 17 x2 − 8 x2 * ( − sin 30o)
212 = 17 x2 − 8 x2 * ( − 0,5)
212 = 17 x2 + 4 x2 = 21 x2 / : 21
21 = x2
x = √21
=======
więc
b = √21 c = 4 √21
=========================
| 1 | ||
cos120o = − | b>0 | |
| 2 |
| 1 | ||
b to b: 212 = b2 + 16b2 + 2*b*4b* | ⇒ 212 = 21b2 ⇒ b = √21 i tyle | |
| 2 |