| t√tet | 1 | |||
∫ | dt = | ∫ tetdt | ||
| 2√t | 2 |
| 1 | ||
x3ex2 = | (x2ex2)' − xex2. | |
| 2 |
| 1 | ||
∫x3ex2dx = | ∫ (x2ex2)'dx − ∫xex2dx | |
| 2 |
| 1 | ||
(1) ∫x3ex2dx = | (x2ex2) − ∫xex2dx | |
| 2 |
| 1 | ||
xex2 = | (ex2)'. | |
| 2 |
| 1 | ||
∫xex2dx = | ∫(ex2)'dx, | |
| 2 |
| 1 | ||
(2) ∫xex2dx = | ex2. | |
| 2 |
| 1 | 1 | |||
∫x3ex2dx = | (x2ex2) − | ex2, | ||
| 2 | 2 |
| 1 | ||
∫x3ex2dx = | (x2−1)ex2. | |
| 2 |
za to że nie schematem.