ciągi
etwas: Wykaż, że jeśli suma początkowych wyrazów o numerach parzystych ciągu arytmetycznego jest równa
110, to wyraz a6=22. Oblicz różnice tego ciągu, jeśli suma pierwszych dziesięciu wyrazów o
numerach nieparzystych jest równa 420.
Otrzymałem, że a6=22, teraz nie wiem co zrobić z drugą częścią. Niby coś napisałem ale dalej
nie wiem jak ruszyć.
22 lut 11:07
Bizon:
... to może zacznij od dokładnego "przerysowania" zadania
22 lut 11:21
etwas: Czyli to co mam pokazać?
22 lut 11:23
Bizon:
... przepisać dokładnie tresć
22 lut 11:27
etwas: Wykaż, że jeżeli suma pięciu początkowych wyrazów o numerach parzystych ciągu arytmetycznego
jest równa 110, to wyraz szósty ciągu jest równy 22. Oblicz różnicę tego ciągu jeżeli suma
pierwszych dziesięciu wyrazów o numerach nieparzystych jest równa 420.
Przepisane tak samo jak jest w książce.
22 lut 11:32
Bizon:
... a widzisz ... a TY nm tu zgaduj−zgadulę urządzasz ...
22 lut 11:38
Bizon:
sądzisz, że sformułowanie "suma
pięciu nie ma znaczenia

?
22 lut 11:39
etwas: Ma, ma, przeoczyłem. Przepraszam bardzo

Tą część z tymi pięcioma zrobiłem, chodzi mi o
dalszą część: Oblicz różnice tego ciągu, jeśli suma pierwszych dziesięciu wyrazów o numerach
nieparzystych jest równa 420.
22 lut 11:40
etwas: prosze o pomoc
22 lut 15:29
Bizon:
musisz ułożyć układ 2 równań z dwoma niewiadomymi
Pierwsze to:
a6=a1+5r ⇒ a1=22−5r
Nad drugim troszkę popracuj
S10niep=420=(a1+a1+9*2r)5
22 lut 16:49
Gusia: Przepraszam a czy mógłbyś to jakoś wytłumaczyć?
28 lut 19:26
Eta:
S
n= mediana *n
a
2+a
4+a
6+a
8+a
10 =110 m
e= a
6 , n=5
S
5= a
6*5 ⇒ 5a
6=110 ⇒
a6=22
| | a9+a11 | |
a1+a3+a5+....... +a19 =420 , me= |
| = a10 |
| | 2 | |
S
10= 10*a
10 ⇒ 10*a
10=420 ⇒
a10 =42
a
n= a
6+(n−6)*r ⇒
an= 5n−8
Teraz możesz to sprawdzić:
an : −3,2,7,12, ........
28 lut 20:22