matematykaszkolna.pl
Sprawdzenie równania Mateusz: Mam ciało poruszające się ruchem przyśpieszonym. Przyśpieszenie jest stałe. "Wiadome": m − masa k − wsp. tarcia F − siła działająca na ciało Q = m * g Obliczyć a − przyśpieszenie. Rozrysowałem siły które działają na ciało. Siły są tutaj wektorami. <rys> Obliczam a w następujący sposób: 1. Rozbijam siły działające na osiach X i Y i dodaje równania na T − tarcie oraz Q co daje mi układ równań:
Q = m * g  
m * a = F * cos(α) − T  
0 = F * sin(α) − Q + N
T = k * N 
2. Wyznaczam T z równania osi "X" oraz N T = m * a − F * cos(α) N = m * g − F * sin(α) 3. Podstawiam do równania na T, "N" z pkt 2 T = k * m * g − k * F * sin(α) 4. Podstawiam T do równania osi "X" m * a = F * cos(α) − k * m * g + k * F * sin(α) W tym momencie w równaniu na przyśpieszenie mam same wiadome 5. wyprowadzam a
 F * (cos(α) + k * sin(α)) − k * m * g 
a =

 m 
Czy to jest poprawne rozwiązanie? Czy może powinienem ignorować oś Y i jakoś inaczej wyprowadzić N?
19 lut 22:54
Mateusz: obrazek o którym zapomniałem... http://imgur.com/SARKlOV
19 lut 22:55
daras: ok
20 lut 05:54
Mateusz: ok oznacza, że jest poprawnie ?
20 lut 08:02