| xn | ||
Określić przedział zbieżności szeregu ∑∞n=2 | i znaleźć jego sumę, następnie | |
| n2−n |
| 1 | ||
wyznaczyć sumę szeregu ∑∞n=2 | . | |
| 2n*n(n−1) |
| 1 | ||
x0=0 an= | ||
| n2−n |
| 1 | (n+1)(n+1−1) | ||||||||||
R=limn−>∞ | =limn−>∞ | * | = | |||||||||
| n(n−1) | 1 |
| 1 | n(n+1) | n+1 | n−1+2 | |||||
limn−>∞ | * | =limn−>∞ | =limn−>∞ | = | ||||
| n(n−1) | 1 | n−1 | n−1 |
| 2 | ||
limn−>∞( 1 + | )=1 | |
| n−1 |
Wskazówka:
| xn | ||
fn(x) = | ⇒ f''n(x) = xn − 2 | |
| n2 − n |
| xn | ||
S(x) = ∑n = 2∞ | ||
| n(n − 1) |
| 1 | ||
S''(x) = ∑n = 2∞xn − 2 = ∑n = 0∞xn = | ⇒ S(x) = ... (dwa razy scałkować) | |
| 1 − x |
| 1 | ||
I na końcu S( | ) = ... | |
| 2 |
| xn | 1 | |||
∑ | x0=0 an= | |||
| n2−n | n2−n |
| 1 | 1 | 1 | ||||
R=limn−>∞U{ | }{ | =limn−>∞ | *U{(n+1)(n+1−1)}= | |||
| n2−n | (n+1)2)−(n+1) | n(n−1) |
| n+1 | 2 | |||
=limn−>∞ | =limn−>∞1+ | =1 | ||
| n−1 | n−1 |
| (−1)n | 1 | |||
∑ | = ∑ (−1)n * | |||
| n2−n | n2−n |
| 1 | ||
an= | ||
| n2−n |
| 1 | 1 | 1 | |||
> | > | ) | |||
| 2 | 6 | 12 |
| 1 | ||
wobec tego na mocy kryterium Leibniza, szereg: ∑ (−1)n * | jest zbieżny. | |
| n2−n |
| 1 | 1 | 4 | ||||
∑ | z kryterium porównawczego, podejrzewam zbieżność: | < | ||||
| n2−n | n2−n | n2 |
| 4 | ||
∑ | jest zbieżny na podstawie szeregu Dirichleta: α>1 | |
| n2 |
| 1 | ||
zatem na mocy kryterium porównawczego szereg ∑ | jest zbieżny | |
| n2−n |
| xn | ||
∑ | = f(x) /' | |
| n2−n |
| n*xn−1 | ||
∑ | = f'(x) | |
| n(n−1) |
| xn−1 | ||
∑ | = f'(x) /' | |
| n−1 |
| (n−1)xn−2 | ||
∑ | = f''(x) | |
| n−1 |
| a1 | 1 | |||
suma nieskończonego szeregu geometrycznego: S= | => S= | |||
| 1−q | 1−x |
| 1 | ||
f''(x)= | /∫ | |
| 1−x |
| 1 | ||
u' = − | v=x | |
| 1−x |
| x | x | |||
* = −[xln|1−x|+∫ | ] = −xln|1−x| − ∫ | dx = * | ||
| 1−x | 1−x |
| x | x | x−1+1 | 1 | |||||
∫ | dx = −∫ | dx = −∫ | dx=−[∫1dx+∫ | dx]= −[x+ln|x−1|]+C | ||||
| 1−x | x−1 | x−1 | x−1 |
| 1 | ||
analogicznie druga część.. tak samo tylko pod 'x' trzeba podstawić | : | |
| 2 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | √2 | 1 | |||||||||||
f( | )=− | ln | + | +ln | = | ln | + | =ln | + | |||||||||||
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |