| 1 | ||
dx | ||
| 3+cosx |
| x | ||
tg | =t | |
| 2 |
| x | ||
Nie wiem nie mogę sobie tego rozpisać zeby t=tg | ||
| 2 |
| x | x | 2 | 1−t2 | |||||
[tg | =t, | =arctg(t), dx= | dt, cosx= | ] | ||||
| 2 | 2 | 1+t2 | 1+t2 |
| 1 | 1 | 2 | |||||||||||||
∫ | dx=∫ | * | dt= po wymnożeniu: | ||||||||||||
| 3+cosx |
| 1+t2 |
| 2 | 1 | |||
=∫ | dt=∫ | dt= [t=√2u, dt=√2 du ] | ||
| 3(1+t2)+1−t2 | 2+t2 |
| √2 | √2 | 1 | ||||
=∫ | du= | ∫ | du= | |||
| 2+2u2 | 2 | 1+u2 |
| √2 | t | |||
= | arctg( | )= | ||
| 2 | √2 |
| √2 |
| ||||||||||||
= | arctg( | )+C | |||||||||||
| 2 | √2 |
| 1 | ||
W mianowniku masz 2+t2, aby skorzystać z wzoru ∫ | dx=arctgx należy wykonac takie | |
| 1+x2 |