| 1 | ||
√tg2 α + 1 = √ | − obydwa wyr. pod pierw. | |
| cos2α |
| sin2 α | ||
√ | + sin2α + cos2α ? | |
| cos2α |
| sin2(x) | sin2(x) | cos2(x) | ||||
tg2(x) + 1 = | + 1 = | + | = | |||
| cos2(x) | cos2(x) | cos2(x) |
| sin2(x) + cos2(x) | 1 | ||
= | |||
| cos2(x) | cos2(x) |
| 1 | ||
Warto zapamiętać to że tg2(x) + 1 = | . | |
| cos2(x) |
| sinα | ||
tgαα= | tg2α=... | |
| cosα |
| sin2a | sin2a + cos2a | 1 | ||||
√tg2a + 1 = √ | + 1 = √ | = √ | ||||
| cos2a | cos2a | cos2a |