
| ax | ||
[ sinx=u, cosx dx=du, dv=axdx, v=∫ax dx, v= | ] | |
| ln(a) |
| ax sinx | 1 | |||
∫ax sinx dx= | − | ∫ax cosx dx= | ||
| ln(a) | ln(a) |
| ax | ||
[cosx=u, −sinxdx=du, dv=∫ax dx, v= | ] | |
| ln(a) |
| ax sinx | 1 | ax | 1 | |||||
= | − | *( | *cosx+ | ∫axsinx dx)= | ||||
| ln(a) | ln(a) | ln(a) | ln(a) |
| ax sinx | 1 | ax | 1 | |||||
= | − | * | *cosx− | ∫axsinx dx⇔ | ||||
| ln(a) | ln(a) | ln(a) | ln2(a) |
| 1 | ax sinx | 1 | ax | |||||
∫axsinx dx+ | ∫axsinx dx= | − | * | *cosx⇔ | ||||
| ln2(a) | ln(a) | ln(a) | ln(a) |
| 1 | ax sinx | axcosx | ln2a | |||||
(1+ | ∫(ax sinx) dx= | − | ⇔ /* | |||||
| ln2a | ln(a) | ln2(a) | ln2a+1 |
| ax*ln(a)*sinx−ax cosx | ||
∫(ax sinx) dx= | ||
| ln2(a)+1 |
| ax(lna*sinx−cosx) | ||
∫axsinxdx = | + c. | |
| 1+ln2a |