Całka
Krzychu: ∫ex cosx dx
10 lut 20:57
Mila:
∫e
x cosx dx=..
[
cosx=u, −sinx dx=du, dv=ex dx , v=ex ]
=e
x cosx+∫(e
xsinx)dx= [
sinx=u, cosx dx=du, dv=ex dx, v=ex ]
=e
x cosx+e
x*sinx−∫e
xcosx dx⇔
2∫e
x cosx dx=e
x cosx+e
x*sinx⇔
| | 1 | |
∫ex cosx dx= |
| ex*(cosx+sinx) |
| | 2 | |
10 lut 21:27