matematykaszkolna.pl
Liniowa niezależność wektorów, baza hgv: Sprawdź czy wektory [1,0,0,−1]T, [1,1,1,1]T, [3,1,1,−1]T są liniowo niezależne. Czy tworzą bazę w R4? Czy v = [3,2,2,1]T jest kombinacją liniową tych wektorów? Ustaliłem, że rząd macierzy wynosi 2. A więc wektory nie są liniowo niezależne. Skoro nie są liniowo niezależne to nie mogą tworzyć bazy w R4. Wektor v też nie może być kombinacją liniową tych wektorów. Niby wszystko wychodzi łatwo, ale czy na pewno gdzieś nie popełniłem błędu? Proszę o weryfikację mojego toku myślenia. Będę bardzo wdzięczny za pomoc.
9 lut 19:39
Krzysiek: v=[3,1,1,−1]+[1,1,1,1]−[1,0,0,−1]
9 lut 19:48