matematykaszkolna.pl
ciąg rekurencyjny Aga:
 a1=1  
mam udowodnić że określony rekurencyjnie ciąg an+1=an+n2+2n+1 , n∊N+ jest
ciągiem rosnacym
9 lut 19:38
Eta: an+1−an >0 −− to ciąg jest rosnący i n∊N+ an+n2+2n+1−an = n2+2n+1= (n+1)2>0
9 lut 19:42
Aga: wielkie dzięki emotka
9 lut 19:43