| x | x | 5 | ||||
sin4 | +cos4 | = | ||||
| 2 | 2 | 8 |
| x | x | 5 | ||||
sin4 | +cos4 | = | /*2 | |||
| 2 | 2 | 8 |
| 5 | ||
sin4x+cos4x= | ||
| 4 |
| 5 | ||
(sin2x+cos2x)2−2sin2cos2= | ||
| 4 |
| 5 | ||
1−2sin2xcos2x= | ||
| 4 |
| 5 | ||
1−2sin2x(1−sin2x)= | ||
| 4 |
| 1 | ||
2sin4x−2sin2x− | =0 /*4 | |
| 4 |
| 1 | ||
a jak nie znasz wzorów na kąty 'połówkowe' to zastosuj podstawienie że x=2t→ | x=t | |
| 2 |
| 1 | ||
sin30o= | ||
| 2 |
| 1 | ||
2*sin30o= | *2=1 | |
| 2 |
| √3 | ||
sin60o= | ≠2*sin30o | |
| 2 |
| x | x | 5 | ||||
sin4 | +cos4 | = | ||||
| 2 | 2 | 8 |
| x | x | x | x | 5 | ||||||
(sin2 | +cos2 | )2−2*sin2 | *cos2 | = | ||||||
| 2 | 2 | 2 | 2 | 8 |
| 1 | x | x | 5 | |||||
1− | *(2 sin | *cos | )2= | ⇔ | ||||
| 2 | 2 | 2 | 8 |
| 1 | 3 | ||
sin2x= | |||
| 2 | 8 |
| x | x | 5 | ||||
sin4x | +cos4 | = | ||||
| 2 | 2 | 8 |
| x | x | 5 | ||||
(1−cos2 | )2+cos4 | = | ||||
| 2 | 2 | 8 |
| x | x | x | 5 | |||||
1−2cos2 | +cos4 | +cos4 | = | |||||
| 2 | 2 | 2 | 8 |
| x | ||
t=cos2 | t>0 | |
| 2 |
| 3 | ||
2t2−2t+ | =0 | |
| 8 |
| 16−8 | 1 | |||
t1= | = | |||
| 32 | 4 |
| 16+8 | 3 | |||
t2= | = | |||
| 32 | 4 |
| x | 1 | |||
cos2 | = | |||
| 2 | 4 |
| x | 1 | x | 1 | |||||
cos | = | lub cos | =− | |||||
| 2 | 2 | 2 | 2 |
| x | 3 | |||
cos2 | = | |||
| 2 | 4 |
| x | √3 | x | √3 | |||||
cos | = | lub cos | =− | |||||
| 2 | 2 | 2 | 2 |
| x | 1 | 1+cosx | 1 | |||||
Jeżeli mam np. cos | = | , to mam wyliczyć coś takiego: √ | = | ? | ||||
| 2 | 2 | 2 | 2 |
| x | 1 | |||
cos | = | , zatem | ||
| 2 | 2 |
| x | π | x | π | ||||
= | +2kπ lub | =− | +2kπ | ||||
| 2 | 3 | 2 | 3 |