matematykaszkolna.pl
Zadanko z rownaniem Piotr: Witam kto pomoze emotka Mam rozwiazac rownianie i kto pomoze mi rozpisac ctg8x*ctg10x −1 = 0
6 lut 12:52
PW: Innymi słowy ctg8x = tg10x Ciekawe, gdzie przecinają się wykresy tangensa i cotangensa.
6 lut 13:01
Piotr: a jak rozpisać cos4x = −2cosx
6 lut 13:03
Piotr: cos4x = −2cos2x
6 lut 13:03
PW: Trochę może uściślę: wykresy tych funkcji o zmodyfikowanych okresach (ctg8x i tg10x mają okresy inne niż π).
6 lut 13:04
PW: Piotruś, Ty znowu z jakimś "rozpisywaniem"? Podaj treść zadania.
6 lut 13:05
Piotr: rozwiaz rownanie
6 lut 13:07
Piotr: cos4x = −2cos2x
6 lut 13:07
Piotr: PW jestes mam pyatnie
6 lut 13:10
PW: Zastosowanie wzoru połówkowego cos2α = cos2α − sin2α = 2cos2α − 1 po lewej stronie.
6 lut 13:10
PW: I dalej jeszcze raz, oczywiście.
6 lut 13:12
Piotr: do tego przykładu ctg8xctg10x −1 = 0 ja zrobiłęm tak ctg8x=tg10x ctg8x−tg10x=0 cos8xco10x − sin8xsin10x −−−−−−−−−−−−−−−−−−− = 0 cos10xsin8x cos(8x+10x) −−−−−−−−− = 0 cos10xsin8x i co dalej ? pomnozyc przez mianownik i pozniej bedzie cos18x = 0 cosx= 0 dla π przez 2 +kπ wiec 18x = π/2 + kπ wiec x =π/36 + 1/18kπ tak
6 lut 13:13
Piotr: moze tak byc
6 lut 13:16
PW: Nie trzeba mnożyć przez mianownik. Ułamek jest zerem wtedy i tylko wtedy, gdy licznik jest zerem. Przyrównać licznik do zera. cosα=0 ma na [0,2π} dwa rozwiązania! Zawsze warto narysować wykres.
6 lut 13:19
Piotr: to ja Zle zrobilem nie mozna mnozyc przez mianownik ?
6 lut 13:21
Piotr:
6 lut 13:24
wredulus:
 a 
Piotr

=0 <=> a=0
 b 
6 lut 13:27
PW:
a 

= 0 ⇔ a = 0
b 
Dla mnie to nie jest mnożenie przez mianownik, ale niech i tak będzie. Źle zrobiłeś, bo zgubiłeś rozwiązania
 3 
18x =

π+2kπ
 2 
6 lut 13:28
Piotr: ok a co do 2 przykałdu cos4x = −2cos2x zobaczcie ja rozpisalem tak
6 lut 13:28
Piotr: cos4x = cos22x − sin22x =cos22x + cos22x − 1 = cos4x − sin4x + cos4x − sin4x − 1 = = 2cos4x − 2sin4x − 1 wiec 2cos4x − 2sin4x − 1 = −2cos2x co dalej
6 lut 13:30
wredulus: A nie prosciej cos(4x) = 2cos2(2x) −1 = 2(2cos2x −1)2 −1 i teraz podstawienie .. y=cos2x
6 lut 13:32
Piotr: tzn jak podstawienie moglbys calosc mi to rozpisac w senise jak rospisanie
6 lut 13:33
wredulus: Srednio bo z komorki pisze. 2(2y−1)2−1 =2y Masz.rozwiazac to rownanie
6 lut 13:36
Piotr: aha ok to juz rozumiem emotka
6 lut 13:37
PW: L = cos4x = 2cos22x −1 P = −2cos2x = −(2cos2x −1) − 2 = −cos22x − 2 (zauważamy, że po prawej stronie jest też wzór połówkowy − pozbawiony jedynki − to ułatwi dalsze rachunki). Równanie ma więc postać 2cos22x − 1 = −cos2x − 2
6 lut 13:41
Piotr: wredulus bardzo latwo i szybko zrobil dziekuje ale tobie PW tez dziekuje za pomoc emotka
6 lut 13:43