matematykaszkolna.pl
Obliczyć całkę Janek: obliczyć całke ∫x+2x2+1dx
3 lut 14:11
wredulus_pospolitus:
x+2 x 2 

=

+

x2+1 x2+1 1+x2 
pierwsza część −−− podstawienie t=x2+1 druga część −−− cala elementarna (szukaj wzoru)
3 lut 14:12
Janek: więc mam t=x2+1 dalej nie bardzo mi to wychodzi dt=2xdx
3 lut 14:31
Janek191:
  d dx 2x dx  dt 

= 0,5 ∫

= 0,5 ∫

= ...
  x2 + 1 x2 + 1 t 
3 lut 14:41
Janek191:
  d dx 2x dx  dt 

= 0,5 ∫

= 0,5 ∫

= ...
  x2 + 1 x2 + 1 t 
3 lut 14:41
Janek: czy wynik to ln|x2+1|+c ?
3 lut 14:50
wredulus_pospolitus: yyyyy a co z 0,5 się stało wyparowało po drugie to jest tylko pierwsza częśc ... a co z drugą całką
3 lut 14:52
Janek: Wynik koncowy wyszedł mi : 0,5 ln|x2+1| + ln|x2+1| + c jest okej ?
3 lut 15:14
wredulus_pospolitus: bzduuura
3 lut 15:15
wredulus_pospolitus:
 dx 
2∫

= ... na pewno nie ln|x2+1|
 x2+1 
3 lut 15:15
Janek191:
 dx 

= arctg x + C1
  x2 + 1 
3 lut 15:19
Janek191:
  dx 1 x 
Jest taki wzór: ∫

=

arctg

+ C , a ≠ 0
  a2 + x2 a a 
3 lut 15:21
Janek: 0,5 ln|x2+1| + 2arctg(x2+1)
3 lut 15:25
wredulus_pospolitus: + C i teraz jest dobrze
3 lut 15:26
Janek: +c oczywiście emotka
3 lut 15:26