| 11 | 7 | |||
α= | π+2kπ lub α= | π+2kπ, k∊C | ||
| 6 | 6 |
| 11 | 7 | |||
Więc 2x= | π+2kπ lub 2x= | π+2kπ, k∊C | ||
| 6 | 6 |
| 11 | 7 | |||
x= | π+kπ lub x= | π+kπ, k∊C | ||
| 12 | 12 |
| π | π | π | 7 | |||||
2x=− | +2kπ→x=− | +kπ⋁2x=π−(− | )+2kπ→x= | π+kπ | ||||
| 6 | 12 | 6 | 12 |
| 1 | 1 | |||
sin2x = −sin( | π) ⇒ sin2x = sin(− | π) | ||
| 6 | 6 |
| 1 | 1 | 1 | 1 | |||||
2x = − | π + k*2π / * | lub 2x = π + | π + k*2π / * | |||||
| 6 | 2 | 6 | 2 |
| 1 | 7 | |||
x = − | π + k*π lub x = | π + k*π | ||
| 12 | 12 |
| 1 | ||
Wynik agus i kaz jest prawidłowy, bo rezultat: x = − | π + k*π jest tożsamy | |
| 12 |
| 11 | ||
z: x = | π + k*π. | |
| 12 |