| n+1 | ||
Mając ciąg an= | wyznacz ciąg bn= an+1 − an | |
| n |
| n+1 | ||
an= | ||
| n |
| n+1+1 | n+1 | |||
bn= | − | |||
| n+1 | n |
| n+2 | n+1 | |||
bn= | − | |||
| n+1 | n |
| (n+2)*n − (n+1)*(n+1) | ||
bn= | ||
| n(n+1) |
| n2+2n−(n2+2n+1) | ||
bn= | ||
| n(n+1) |
| n2+2n−n2−2n−1 | ||
bn= | ||
| n(n+1) |
| −1 | ||
bn= | ||
| n(n+1) |
| 1 | ||
an=1+ | , | |
| n |
| 1 | ||
an+1 = 1+ | . | |
| n+1 |
| 1 | 1 | |||
an+1−an = | − | |||
| n+1 | n |