| x3+1 | x | |||
limx→∞ ( | − | ) | ||
| 2x2−3x | 2 |
| 3 | ||
Według wolframa jest to = | ||
| 4 |
| x3+1 | x | x3(1+1/x3) | ||||
limx→∞ ( | − | )=limx→∞ ( | ||||
| 2x2−3x | 2 | x2(2−3/x) |
| x | x | x | ||||
− | )=limx→∞ ( | − | )=0 | |||
| 2 | 2 | 2 |
| x(1+(1/x3) | +∞*(1+0) | |||
limx→+∞ | = | = +∞ | ||
| 2−(3/x) | 2−0 |
| x | ||
a nie żadne | bo to nonsens | |
| 2 |
| 2(x3+1) − x(2x2−3x) | 2x3 +2 − 2x3 + 3x2 | |||
= | = | = | ||
| 2(2x2−3x) | 4x2 − 6x |
| 3x2+2 | 3+(2/x2) | 3+0 | |||
= | → | ||||
| 4x2−6 | 4−(6/x2) | 4−0 |