| 1 | ||
t1=− | ||
| 2 |
| 1 | ||
cosx=− | v cosx=1 | |
| 2 |
| π | ||
x1=− | v x1=0 | |
| 3 |
| 5 | ||
x2=− | v x2=2π | |
| 3 |
| 1 | ||
2t(t− | ) ≤ 0 | |
| 2 |
| 1 | ||
t≥ 0 v t− | ≤0 | |
| 2 |
| 1 | ||
cosx ≥ v t≤ | ||
| 2 |
| 1 | ||
cosx≤ | ||
| 2 |
| π | π | π | π | |||||
x∊<− | ,− | >∪ < | , | > | ||||
| 2 | 3 | 2 | 3 |
| π | ||
sinx+cosx= √2cos(x− | ) | |
| 4 |
| π | ||
sinx+cosx= √2cos(x− | ) | |
| 4 |
| π | ||
√2 cos ( x − | ) = 1 / : √2 | |
| 4 |
| π | 1 | √2 | ||||
cos ( x − | ) = | = | ||||
| 4 | √2 | 2 |
| π | π | π | π | |||||
cos ( x − | ) = cos [ | + 2π*k] lub cos( x − | ) = cos [( − | ) + 2π*k] | ||||
| 4 | 4 | 4 | 4 |
| π | π | π | π | |||||
x − | = | + 2π*k lub x − | = − | + 2π*k | ||||
| 4 | 4 | 4 | 4 |
| π | ||
x = | + 2π*k lub x = 2π*k , gdzie k − dowolna liczba całkowita | |
| 2 |