matematykaszkolna.pl
Pomocy nierówności Madzia: rozwiązaniem nierówności x{2}≥2x+6 jest
21 sty 17:53
Marcin: Poprzenoś wszystko na lewą stronę i licz deltę.
21 sty 17:55
Madzia: a mógłbyś mi przenieść to dalej sobie poradze
21 sty 17:57
Madzia: a mógłbyś mi przenieść to dalej sobie poradze
21 sty 17:57
5-latek:
 6 
tylko ze pewnie to jest tak x2≥2x+6 i teraz x2−2x≥6 to x(2−2)≥6 to x≤

 2−2 
Usun teraz niewymiernosc z mianownika i zastanow sie dlaczego nastapila zmiana zwotu nierownosci
21 sty 18:03
Madzia: nie mam pojeciaemotka
21 sty 18:13
5-latek: A czy ta nierownosc jest taka jak to zapisalem ?
21 sty 18:14
Madzia: odpowiedzi są " a. <−32+6,+ > b. <−32−6,+> c. <−,−32−6> d. (−,−32+6>
21 sty 18:20
5-latek: Madziu to zadanie jest proste i mi nie sa to tego zadania potrzebne odpowiedzi emotka POza tym przy +oo i −oo przedzialy sa otwrate a nie domkniete Nastapila zmiana zwrutu nierownosci bo liczba 2−2 jest <0 a jak dzielisz lub mnozysz przez liczbe ujemna to nastepuje zmiana zwrotu nierownosci na przeciwny .
 6 2+2 6(2+2 
mamy tak x<=

*

to x<=

to
 2−2 2+2 (2)2−22 
 62+12 
x<=

i teraz z wlasnosci dzialan na liczbach rzeczywistych takiej
 −2 
 a+b a b 62 12 

=

+

mozemy zapisac z e x<=

+

po skroceniu to
 c c c −2 −2 
x<=−32−6 to w takim razie ktora to bedzie odpoeidz ?
21 sty 18:38
madziaa: c
21 sty 18:42
5-latek: emotka teraz rozumiesz ?
21 sty 18:50