Czyli y = x2 − x3 D = R
lim x → −∞ ( x2 − x3 ) = +∞
lim x → + ∞ ( x2 − x3 ) = lim x → ∞ x2*( 1 − x) = − ∞
y' = 2x − 3 x2
y' = 0 ⇔ 2x − 3 x2 = 0 ⇔ x*( 2 − 3x) = 0 ⇔ x = 0 lub x =23
y(0) = 0
| 4 | 8 | 4 | ||||
y( 23) = (23)2 − (23)3 = | − | = | > 0 | |||
| 9 | 27 | 27 |