Obliczyć całke
cbk: Obliczyć całkę:
∫x+1/x2+3
16 sty 16:54
Mila:
| 1 | | 2x | | 1 | | 1 | | 1 | | x | |
| ∫ |
| dx+∫ |
| dx= |
| ln(x2+3}+ |
| arctg |
| +C |
| 2 | | x2+3 | | x2+3 | | 2 | | √3 | | √3 | |
16 sty 17:02
cbk: czemu przed arctg jest 1√3 ?
16 sty 17:19
Mila:
We wzorach to powinno być.
Wyjasniam: trzeba podstawic
x=
√3t, dx=
√3dt
| | 1 | | √3dt | | √3 | | 1 | | √3 | |
∫ |
| dx=∫ |
| = |
| ∫ |
| = |
| arctgt= |
| | x2+3 | | 3t2+3 | | 3 | | t2+1 | | 3 | |
16 sty 17:25
cbk: wielkie dzięki, bo mi właśnie wyszło √33 i mnie zmyliło to 1 √3 .
a takie coś ∫ 2x+3/x2+4 też należy rozbić na dwie całki?
16 sty 17:32
Mila:
Można , wyjdzie.
16 sty 17:47