| 1 | 1 | ||
+ | i z tego tworze szeregi tak ze: | ||
| x−1 | x−2 |
| 1 | −1 | ||
= | = −∑(x)n | ||
| x−1 | 1−x |
| 1 | −1 | xn | |||
= | = − ∑ | ||||
| x−2 | 2(1−(x/2)) | 2n+1 |
| (x)n+1 | ||
teraz je calkuje to mam −∑ | ||
| n+1 |
| xn+1 | ||
− ∑ | ||
| 2n+1(n+1) |
| (x)n+1 | xn+1 | |||
−∑ | − ∑ | = | ||
| n+1 | 2n+1(n+1) |
| −(x)n+12n+1−xn+1 | ||
∑ | ||
| 2n+1(n+1) |
| xn+1 | ||
S(x)=−∑n=0 | +C | |
| n+1 |
| 2n+1 | ||
czyli C=∑n=0 | ||
| n+1 |