Rozwiąż równania i nierówności trygonometryczne
Volae: Równania:
x∊R
a) cos(2x− π/2) = 0
b) sin3(x−π) = 1
c) 2cos2x = 1
d) 2sin2x−√3sinx = 0
e) (3−√3)tgx−3tg2x+√3 = 0
f) √3cosx = 1−sinx
g) sinx+sin2x = sin3x
h) sin3x+cos3x = √2
Nierówności:
1) sin(2x−π) < 1 ; x∊R
2) 4cos24x > 3 ; x∊<0;2π>
9 sty 19:54
wredulus_pospolitus:
bardzo fajne równania i nierówności ... i co z tym

żadnego nie jesteś w stanie zrobić
9 sty 20:05
Volae: Kilka prawdopodobnie zrobię, jednak wolę mieć pewność, że dobrze
9 sty 20:12
Lorak: Mile widziane Twoje próby rozwiązań
9 sty 20:17
Volae: Więc w przypadku c wychodzi mi coś takiego
2cos
2x=1
cos
2x=1/2
cosx=
√1/2 v cosx=−
√1/2
x= π/4+2kπ x=3/4π+2kπ
x=−π/4+2kπ x=−3/4π+2kπ
tylko nie bardzo to ogarniam
9 sty 20:40