| x2 | x02 | |||
limx→x0(ln(x2) − ln(x02)) = limx→x0ln( | ) = ln | = ln1 = 0 | ||
| x02 | x02 |
f(x)=log2x; x0=(1:2)
limx→x0[log2x−log2x0]]=limx→x0[log2(x/x0)=log2(x0/x0)=log21=0
f(x)=√x−1; x=[1;+∞)
limx→x0[√x−1−√x0−1]=limx→x0[√x−1+x0−1−2√(x−1)(x0−1)]=√2x
0+2−√(x0−1)2=√2x0+2−2x0+2=√4=2
f(x)=sin2; x=R
limx→x0[sin2x−sin2x0]=limx→x0[sin2(x/x0)]=sin21=0,7

