Proszę o pomoc
Milenka: wyznacza pochodne cząstkowe pierwszego i drugiego rzędu
2x3y−xy2+x w punkcie P(0,1)
8 sty 21:49
Janek191:
f( x, y) = 2 x3 y − x y2 + x
więc
f'x ( x, y) = 6x2 y − y2 + 1
f'y ( x, y) = 2 x3 − 2x y
zatem
f'x( 0, 1) = 0 − 1 + 1 = 0 i f'y ( 0,1) = 0 − 0 = 0
f"xx ( x, y) = 12x y
f"xy ( x, y) = 6 x2 −2 y
f"yx ( x, y) = 6 x2 − 2 y
f"yy ( x, y) = − 2 x
zatem
f"xx ( 0, 1) = 0
f"xy ( 0, 1) = − 2
f"yx ( 0, 1) = − 2
f"yy ( 0, 1) = 0
8 sty 22:11