| 1 | ||
sin4x + cos4x = | ||
| 2 |
| 1 | ||
sin4x + (1−sin2x)2 = | ||
| 2 |
| 1 | ||
sin4x + 1 − 2sin2x + sin4x = | ||
| 2 |
| 1 | ||
2sin4x − 2sin2x + 1 = | ||
| 2 |
| 1 | ||
2sin4x − 2sin2x + | = 0 | |
| 2 |
| √2 | ||
(√2sin2x − | )2 = 0 | |
| 2 |
| √2 | ||
√2sin2x − | = 0 | |
| 2 |
| √2 | ||
√2sin2x = | ||
| 2 |
| √2 | √2 | |||
sin2x = | * | |||
| 2 | 2 |
| 1 | ||
sin2x = | ||
| 2 |
| √2 | ||
|sinx| = | ||
| 2 |
| √2 | ||
sinx = ± | ||
| 2 |
| √2 | ||
1. sinx = | ||
| 2 |
| π | ||
1.1 x = | + 2kπ | |
| 4 |
| 3π | ||
1.2 x = | + 2kπ | |
| 4 |
| √2 | ||
2. sinx = − | ||
| 2 |
| π | ||
2.1 x = − | + 2kπ | |
| 4 |
| 3π | ||
2.2 x = − | + 2kπ | |
| 4 |
| π | 3π | 5π | 7π | |||||
x ∊ { | , | , | , | } | ||||
| 4 | 4 | 4 | 4 |
sin4x + cos4x = sin4x + 2sin2xcos2x + cos4x − 2sin2xcos2x =
| 1 | 1 | |||
= (sin2x + cos2x)2 − | *4sin2xcos2x = 12 − | (2sinxcosx)2 = | ||
| 2 | 2 |
| 1 | 3 | 1 | 3 | 1 | ||||||
= 1 − | sin2(2x) *= | + | (1−2sin2(2x)) = | + | cos(4x) | |||||
| 2 | 4 | 4 | 4 | 4 |
| 3 | 1 | 1 | |||
+ | cos(4x) = | −−−> cos(4x) = −1 −−−> | |||
| 4 | 4 | 2 |
| π | kπ | |||
−−−−> 4x = π + 2kπ −−−> x = | + | |||
| 4 | 2 |