| fn(0)xn | ||
no i teraz wzor Maclaurina = f(x) = f(0) + ∑ | ||
| n! |
| 2x2 | 12x4 | |||
1− | + | ..... to dobrze? | ||
| 2! | 4! |
| xn | ||
ex = ∑n=0..∞ | ||
| n! |
| (−x2)n | (−1)nx2n | |||
e−x2 = ∑n=0..∞ | = ∑n=0..∞ | |||
| n! | n! |
| x4 | x6 | x8 | ||||
= 1 − x2 + | − | + | − ... | |||
| 2 | 6 | 24 |
| x | ||
f(x) = | ||
| 3−x |
| 3 | 1 | xn | ||||
f(x) = −1 + | = −1 + | = −1 + ∑n=0..∞ | , |x| < 3. | |||
| 3−x | 1−x3 | 3n |