matematykaszkolna.pl
Suma szeregu pat: Wyznaczyć sumę szeregu
 (2n+1)n 
∑ ln

 (n+1)(2n−1) 
rozpisuję to tak ln (2n+1)n − ln(n+1)(2n−1)= ln(2n+1)+lnn −ln(n+1)−ln(2n−1) podstawiam i wychodzi mi 0, a powinno wyjść ln2. Pomoże ktoś?
5 sty 10:58
Krzysiek: ∑ln(...)=ln(∏(...))
 (2n+1)n 2n+1 n 

=∏(

*

)
 (n+1)(2n−1) 2n−1 n+1 
i jak sumowanie jest od n=1
 2n+1 n 2N+1 
to wtedy: ∏n=1N(

*

)=

→2
 2n−1 n+1 N+1 
czyli ∑ln(...)=ln2
5 sty 11:32
pat: Dziękuję emotka
5 sty 11:44