| 3√5 | ||
sinx + cosx = | x∊ (0; π/2) | |
| 5 |
| 2√5 | √5 | |||
Odp.: sinx = | , cosx = | |||
| 5 | 5 |
| √5 | 2√5 | |||
lub sinx = | , cosx = | |||
| 5 | 5 |
| 3√5 | ||
sinx + cosx = | ||
| 5 |
| 3√5 | ||
sin2x + ( | − sinx)2 = 1 | |
| 5 |
| 6√5 | 9 | |||
2sin2x − | sinx + | = 1 // * 5 | ||
| 5 | 5 |
skoro x jest kątem ostrym to
| a | ||
sinx= | ||
| c |
| b | ||
cosx= | ||
| c |
| a+b | ||
sinx+cosx= | ||
| c |
| a+b | 3√5 | ||
= | c=√a2+b2 zał b>a | ||
| c | 5 |
| a | a | a | ||||
20( | )2−50 | +20=0 :10 | =t | |||
| b | b | b |
| 5−3 | 2 | 1 | ||||
t1= | = | = | ||||
| 4 | 4 | 2 |
| 5+3 | 8 | |||
t2= | = | =2 sprzeczność z założeniem | ||
| 4 | 4 |
| a | 1 | ||
= | |||
| b | 2 |
| a | √5 | |||
sinx= | = | |||
| a√5 | 5 |
| 2a | 2√5 | |||
cosx= | = | jeśli założymy że a>b to otrzymamy drugą wersję | ||
| a√5 | 5 |