| 6x − 4 | ||
∫ | dx | |
| 4x2 − 4x +1 |
| 6x − 4 | 6x − 3 − 1 | |||
= ∫ | dx = ∫ | dx = | ||
| (2x − 1)2 | (2x − 1)2 |
| 1 | 1 | |||
= 3 ∫ | dx − ∫ | dx | ||
| 2x − 1 | (2x − 1)2 |
| 6x−4 | 8x−4 − 2x | |||
∫ | dx = ∫ | dx = | ||
| 4x2−4x+1 | 4x2−4x+1 |
| 8x−4 | 2x | 2x | ||||
= ∫ | dx − ∫ | dx = ln|4x2−4x+1| − ∫ | dx = | |||
| 4x2−4x+1 | (2x−1)2 | (2x−1)2 |
| t+1 | ||
= | 2x−1=t, to 2x=t+1 i 2dx=dt | = ln(2x−1)2− ∫ | *12dt= | |
| t2 |
| 1 | ||
= 2ln|2x−1|− ln√t +12t = 2ln|2x−1|−ln√2x−1+ | + C | |
| 2(2x−1) |