| 1+2+..+n | n | |||
lim n−>∞ | − | = ja to zrobiłam tak (korzystam z sumy algebraicznej) = | ||
| n+2 | 2 |
| (1*n)*n | n | −n2 − 4n | ||||
[ | ]/(n+2) − | = | = − ∞ a powinno wyjść −1/2 | |||
| 2 | 2 | 4n+8 |
| 1 | 1 | 1 | ||||
lim n−>∞ n( | + | + ... + | i ma wyjść 1 | |||
| n2+1 | n2+2 | n2 +n |
| 1 | ||
1 + 2 + ... + n = | n(1 + n) suma ciągu arytmetycznego: a1 = 1, an = n, r = 1 | |
| 2 |
| n(n+1) | n | n | n+1 | n | −1 | −n | ||||||||
a)= | − | = | ( | −1)= | * | = | →−1/2 | |||||||
| 2(n+2) | 2 | 2 | n+2 | 2 | n+2 | 2(n+2) |
| 1 | 1 | 1 | 1 | 1 | 1 | ||||||
+ | + ... + | ≤ | + | + ... + | |||||||
| n2+n | n2+n | n2+n | n2+1 | n2+2 | n2+n |
| 1 | 1 | 1 | ||||
≤ | + | +...+ | ||||
| n2 | n2 | n2 |
| 1 | 1 | 1 | n | |||||
n * ( | + | + ... + | ) = n * | → 1 | ||||
| n2 + n | n2 + n | n2 + n | n2 + n |
| 1 | 1 | 1 | n | |||||
n * ( | + | + ... + | ) = n * | → 1 | ||||
| n2 + 1 | n2 + 1 | n2 + 1 | n2 + 1 |