I DB I = 3*I AD I + 2
I CD I = I AD I + 2
czyli
x = 3 y + 2
h = y + 2
Mamy
h2 = x*y
( y + 2)2 = ( 3 y + 2)*y
y2 + 4 y + 4 = 3 y2 + 2 y
2 y2 − 2 y − 4 = 0 / : 2
y2 − y − 2 = 0
( y − 2)*( y + 1) = 0
y = 2 lub y = − 1 − odpada, bo y −długość odcinka
====
x = 3*2 + 2 = 8
c = I AB I = x + y = 8 + 2 = 10
h2 = x*y = 8*2 = 16
h = 4
zatem PΔABC = 0,5 I AB I *h = 0,5 *10*4 = 20 [ j2 ]
============================================
b2 = h2 + y2 = 42 + 22 = 16 + 4 = 20 = 4*5
b = 2 √5
========
a2 = x2 + h2 = 82 + 42 = 64 + 16 = 80 = 16*5
a = 4 √5
========
Obwód L = a + b + c = 4 √5 + 2 √5 + 10 = 6√5 + 10
| 2 P | ||
P = 0,5 L*r ⇒ r = | ||
| L |
| 40 | 20 | |||
r = | = | = 3 √5 − 5 ≈ 1,7 | ||
| 6√5 + 10 | 3 √5 + 5 |