| π | ||
|1−4sin(x− | )|=1 , dla x∊<0;2π> | |
| 4 |
| π | ||
wiem , że muszę przesunąć wykres sinusoidy o | w prawo ale chyba to wszystko co wiem ![]() | |
| 4 |
| π | π | |||
1−4sin(x− | )=1 lub 1−4sin(x− | )= −1 | ||
| 4 | 4 |
| π | π | 1 | ||||
sin(x− | )=0 lub sin(x− | )= | ||||
| 4 | 4 | 2 |
| 1 | ||
sinx=0 lub x= | ||
| 2 |
| π | ||
sinxx∊{π+kπ;2π+kπ} sin= | ||
| 6 |
| π | ||
sin=π− | ={5π}{6} lub | |
| 6 |
| π | 7π | |||
π+ | = | |||
| 6 | 6 |
| π | ||
sin(x− | )=0 | |
| 4 |
| π | π | |||
x− | = k*π ⇒ x= | +k*π , k∊ C | ||
| 4 | 4 |
| π | 1 | |||
sin(x− | )= | |||
| 4 | 2 |
| π | π | π | π | |||||
x− | = | +k*2π lub x− | = π− | + k*2π | ||||
| 4 | 6 | 6 | 4 |