| 3n | ||
lim = | [ln(2n + 1) − ln(2n − 3)] | |
| π |
| a | ||
ln a − ln b = ln | ||
| b |
przybliżę ci tego Eulera
np. tak :
| 2n+1 | ||
lim n →∞ 3nπ [ln(2n+1)−ln(2n−3))= lim n →∞ 3nπ ln | = | |
| 2n−3 |
| 2n−3+4 | 4 | |||
= lim n →∞ 3nπ ln | = lim n →∞ ln (1+ | )3nπ= | ||
| 2n−3 | 2n−3 |
| 4 | ||
lim n →∞ ln (1+ | ) 14 (2n−3) * 12n2n−3* 1π = | |
| 2n−3 |
| 12n | 1 | |||
= ln e 12n2n−3* 1π = | * | ln e = | ||
| 2n−3 | π |
| 12 | 1 | 6 | ||||
= | * | * 1= | − szukana granica | |||
| 2 | π | π |