| √x + 1 − 1 | ||
a) lim x−>0 | ||
| x |
| √1 + x + x2 − √7 + 2x − x2 | ||
b) lim x−>2 | ||
| x2 − 2x |
| √x+1−1 | x+1−1 | x | 1 | ||||
= | = | = | |||||
| x | x(√x+1+1) | x(√x+1+1) | √x+1+1 |
| √x+1−1 | 1 | 1 | 1 | |||||
limx→0 | =limx→0 | = | = | |||||
| x | √x+1+1 | √1+1 | 2 |
| √1+x+x2−√7+2x−x2 | 1+x+x2−7−2x+x2 | ||
= | = | ||
| x2−2x | x(x−2)(√1+x+x2+√7+2x−x2) |
| 2x2−x−6 | (x−2)(2x+3) | |||
= | = | = | ||
| x(x−2)(√1+x+x2+√7+2x−x2) | x(x−2)(√1+x+x2+√7+2x−x2) |
| 2x+3 | ||
= | ||
| x(√1+x+x2+√7+2x−x2) |
| 2x+3 | 7 | 7 | 1 | |||||
limx→2 | = | = | = | |||||
| x(√1+x+x2+√7+2x−x2) | 2*√7*√7 | 2*7 | 2 |
| x+2 | ||
1) lim x−>0 | ||
| x2−x |
| x | ||
lim x→0+ | pomocy ! | |
| lnx2 |