Oblicz granicę ciągu o wyrazie ogólnym:
karolciahh: an=√n+8−√n
an=4n+1/2n+1
25 lis 14:03
irena_1:
| | n+8−n | | 8 | | 8 | |
an=√n+8−√n= |
| = |
| =[ |
| ]=0 |
| | √n+8+√n | | √n+8+√n | | ∞ | |
25 lis 14:04
25 lis 14:05
irena_1:
| | 4n+1 | | 4+1n | | 4 | |
an= |
| = |
| → |
| =2 |
| | 2n+1 | | 2+1n | | 2 | |
25 lis 14:06
karolciahh: an=5*3n−7*2n/7*3n+5*2n
25 lis 14:12
irena_1:
| | 5*3n−7*2n | | 5−7*(23)n | | 5 | |
an= |
| = |
| → |
| |
| | 7*3n+5*2n | | 7+5*(23)n | | 7 | |
25 lis 14:16
karolciahh: a czemu 5/7?
25 lis 14:19
25 lis 14:23
karolciahh: wiem wiem ale te rownanie 5−7/7+5 to bedzie 5/7?
25 lis 14:26
irena_1:
| | 2 | | 2 | | 2 | |
Jeśli ( |
| )n→0, to i 7*( |
| )n→0 oraz 5*( |
| )n→0 |
| | 3 | | 3 | | 3 | |
25 lis 14:30
karolciahh: aaaa ojej no tak dzięki
25 lis 14:31