| 2x2−3 | ||
a) y= | ||
| x2+2 |
| x2−x+1 | ||
b) y= | ||
| x2+x+1 |
| 2x2−3 | ||
a) y= | i x∊R ⇒ yx2+2y= 2x2−3 ⇔ (y−2)x2= −2y−3 ⇔ | |
| x2+2 |
| −2y−3 | ||
⇔ x2= | i y−2≠0 ma sens (istnieją x∊R) ⇔ | |
| y−2 |
| −2y−3 | ||
⇔ | ≥0 /:(−2) i y≠2 ⇔ (y+32)(y−2) ≤ 0 i y≠2 ⇔ | |
| y−2 |
−−−−−−−−−−−−−−−−−−−−−−−−−
analogicznie b)