| (2n − 1)! | ||
∑ | ||
| (4n)! |
to jak Ty na maturze zadania z kombinatoryki/prawdopodobieństwa robiłeś
| (2n − 1)! | ||
∑ | ||
| (4n)! |
| (2n − 1)! | ||
an = ∑ | ||
| (4n)! |
| [2n+1) − 1]! | ||
an+1 = ∑ | ||
| (4n+1)! |
| (2n − 1)! | (4n)! | |||
lim n→∞ | * | |||
| (4n+1)! | (2n−1)! |
| (2n − 1)! | ||
∑ | ||
| (4n)! |
| (2n − 1)! | ||
an =∑ | ||
| (4n)! |
| [2n+1) − 1]! | (2n − 1)! | |||
an+1 = ∑ | = ∑ | |||
| (4n+1)! | (4n+1)! |
| (2n − 1)! | (4n)! | |||
lin n→∞ | * | = | ||
| (4n+1)! | (2n−1)! |
| (4n)! | ||
= | i co dalej ? o ile jest dobrze ? | |
| (4n−1)! |
| (2n − 1)! | ||
an = | ||
| (4n)! |
| (2(n+1) − 1)! | (2n + 2 − 1)! | (2n+1)! | ||||
an+1 = | = | = | ||||
| (4(n+1))! | (4n + 4)! | (4n+4)! |
| (2n+1)! | (4n)! | |||
lim | * | = | ||
| (4n+4)! | (2n − 1)! |
| (2n+1)*(2n)*(2n−1)! | (4n)! | |||
= lim | * | = | ||
| (4n+4)*(4n+3)*(4n+2)*(4n+1)*(4n)! | (2n − 1)! |
| (2n+1)*(2n) | ||
= lim | = ... i liczysz dalej granicę | |
| (4n+4)*(4n+3)*(4n+2)*(4n+1) |