ZADANKO
Jaś132: CIEKAWE ZADANIE LECZ TROCHE DLA MNIE TRUDNE JAK GO ROZWIĄZAĆ?
Z odcinka <0, 2> wybieramy losowo i niezależnie dwie liczby a i b.
Jakie jest prawdopodobieństwo tego, że równanie ax2 + 2ax + 3b = 0
będzie miało dwa różne pierwiastki rzeczywiste?
13 lis 15:28
wredulus_pospolitus:
dwa rózne pierwisatki ... warunki:
1) Δ>0
Δ = 4a2 − 4ab = 4a(a−b)
2) a≠0
wniosek ... a>b
jaka jest szansa że wybierając dwie liczby ... pierwsza wybierana będzie większa od tej drugiej
?
13 lis 15:34
Jaś132: chyba źle policzyłeś delte
Δ=4a
2−12ab
4a(a−3ab)>0
a>3ab
13 lis 15:39
Jaś132: nie wiem codalej jakieś pomysły?
13 lis 15:40
wredulus_pospolitus:
ale Ty też źle

4a
2 − 12ab = 4a(a−3b)
| | 2 | |
jeżeli a> |
| to obojętnie jakie b |
| | 3 | |
| | 2 | |
jeżeli a∊(0, |
| ) to jaka jest szansa, że 'b' będzie w odpowiednim przedziale ? |
| | 3 | |
13 lis 15:42
Jaś132: więc masz pomysł jak to zadanie doprowadzic do konca
13 lis 15:44
wredulus_pospolitus:
mam ... ale czekam na 'pomysł' z Twojej strony
| | | | 2 | |
na pewno P(A) > |
| ... bo to jest pierwszy przypadek (gdy a> |
| ) a co przy |
| | 2 | | 3 | |
drugim ?
13 lis 15:45
13 lis 15:48
wredulus_pospolitus:
| | 2 | | 2 | |
bo jaka jest szansa że a> |
| (czyli będzie w przedziale ( |
| ,2>  ) |
| | 3 | | 3 | |
13 lis 15:51
13 lis 15:52
wredulus_pospolitus:
cholera ... jeszcze raz
masz warunek:
a>3b
(ja w głowie miałem 3a>b

)
więc nie ma 'pewniaka'
więc przechodzi od razu do drugiej części ... wiesz, że:
if: a=2 to b z jakiego przedziału może być

if: a=1.5 to b z jakiego przedziału może być

if: a=1 to b z jakiego przedziału może być

if: a=0.5 to b z jakiego przedziału może być

widzisz 'zależność'

(niestety to albo się zobaczy albo nie)
13 lis 15:57
Jaś132: widze spoko a teraz jak obliczyc to prawdopodobienstwo
13 lis 16:02
wredulus_pospolitus:
no właśnie z zauważenia tej zależności i wyciągnięcia wniosków (patrz średnia)
13 lis 16:06
Jaś132: ?
13 lis 16:07
Jaś132: nie wiem niestety jak obliczyc to prawdopodobienstwo
13 lis 16:08
Jaś132: pokaż jak ty byś to rozwiązał od początku do konca
13 lis 16:11
wredulus_pospolitus:
niestety musze się zbierać
rozumowanie jak dotychczas ... dochodzę do a>3b
średnia z przedzialu <0,2> −> 1
| | 1 | | 1 | | | | 1 | |
1>3b −> b< |
| ... szansa, ze b< |
| wynosi P(b1) = |
| = |
| |
| | 3 | | 3 | | 2 | | 6 | |
| | | | 1 | | 1 | |
P(A) = |
| = 1* |
| = |
| |
| | 2*2 | | 6 | | 6 | |
13 lis 16:15