matematykaszkolna.pl
Algebra PruS1o: PruS1o: Zad 1) Udowodnij, że w grupie (G,*) istnieje dokładnie jeden element neutralny. Zad 2)Udowodnij, że w grupie (G, *) dla dowolnego elementu g ε G istnieje dokladnie jeden element odwrotny. Zad 3)Niech D=R\{0,1} i niech dla i=1,2,...,6 funkcje f(i): D→D będą określone wzorami: 1 f1(x)=x, f2(x)= f3(x)=U{ x−1 }{ x 1−x } 1 x f4(x)= f5(x)= 1−x f6(x)= x x−1 Sprawdź, czy składanie funkcji "o" jest działaniem w G = {f1,f2,...,f6} (zbudowac tabelkę). Czy para (G,o) jest grupą?
9 lis 19:41
9 lis 20:57