Granica ciągu.
Jarek: Określ wartość wyrażenia:
| | 1 | | 2 | | n − 1 | |
a) lim ( |
| + |
| + . . . + |
| ) |
| | n2 | | n2 | | n2 | |
n→
∞
b) lim (
√2 4√2 8√2 . . .
2n√2 )
n→
∞
7 lis 15:51
Krzysiek: a) w liczniku masz sumę ciągu arytmetycznego
b)√2=21/2
4√2=21/4
korzystasz z tego,że: ab*ac=ab+c
i w potędze masz sumę ciągu geometrycznego
7 lis 16:06
Janek191:
a)
| | 1 | | 2 | | n − 1 | | 1 + 2 + ... + ( n −1) | |
an = |
| + |
| + ... + |
| = |
| = |
| | n2 | | n2 | | n2 | | n2 | |
| | 0,5 *( n −1)*n | | 0,5 n2 − 0,5 n | | 0,5 − 0,5n | |
= |
| = |
| = |
| |
| | n2 | | n2 | | 1 | |
więc
lim a
n = 0,5 − 0 = 0,5
n →
∞
====================
7 lis 16:07
Janek191:
a)
| | 1 | | 2 | | n − 1 | | 1 + 2 + ... + ( n −1) | |
an = |
| + |
| + ... + |
| = |
| = |
| | n2 | | n2 | | n2 | | n2 | |
| | 0,5 *( n −1)*n | | 0,5 n2 − 0,5 n | | 0,5 − 0,5n | |
= |
| = |
| = |
| |
| | n2 | | n2 | | 1 | |
więc
lim a
n = 0,5 − 0 = 0,5
n →
∞
====================
b)
a
n = 2
12 * 2
14*2
18 * ... *2
12n =
= 2
12+ 14 + ... + 12n= 2
1 − (12)n
bo
| 1 | | 1 | | 1 | | 1 | | 1 −( 12)n | |
| + |
| + ... + |
| = |
| * |
| = |
| 2 | | 4 | | 2n | | 2 | | 1 − 12 | |
więc
lim a
n = 2
1 − 0 = 2
1 = 2
n →
∞
==========================
7 lis 16:20
Janek191:
a)
| | 1 | | 2 | | n − 1 | | 1 + 2 + ... + ( n −1) | |
an = |
| + |
| + ... + |
| = |
| = |
| | n2 | | n2 | | n2 | | n2 | |
| | 0,5 *( n −1)*n | | 0,5 n2 − 0,5 n | | 0,5 − 0,5n | |
= |
| = |
| = |
| |
| | n2 | | n2 | | 1 | |
więc
lim a
n = 0,5 − 0 = 0,5
n →
∞
====================
b)
a
n = 2
12 * 2
14*2
18 * ... *2
12n =
= 2
12+ 14 + ... + 12n= 2
1 − (12)n
bo
| 1 | | 1 | | 1 | | 1 | | 1 −( 12)n | |
| + |
| + ... + |
| = |
| * |
| = |
| 2 | | 4 | | 2n | | 2 | | 1 − 12 | |
więc
lim a
n = 2
1 − 0 = 2
1 = 2
n →
∞
==========================
7 lis 16:21
Jarek: Dzięki!
A jeszcze coś takiego:
| | 1 | | 2 | | 3 | | (−1)n−1 n | |
lim | |
| − |
| + |
| − ... + |
| | |
| | n | | n | | n | | n | |
n→
∞
7 lis 16:33
asdf:
suma parzystych − suma nieparzystych = ?
7 lis 16:51
asdf:
sorry, tak o:
suma nieparzystych − suma parzystych = ?
7 lis 16:52
Jarek: Właśnie nie wiem.
7 lis 17:30
7 lis 17:44